

The Future of Female Urology

Karl J. Kreder, MD, MBA

Professor and Department Executive Officer Rubin H. Flocks Chair University of Iowa Department of Urology

Disclosures

- Medtronic: Consultant
- Symptelligence: Consultant
- Tengion: Consultant

The Issues

- Stress Urinary Incontinence
 - -1 in 5 women have some degree of SUI
 - ->100K sling procedures each year
- Pelvic Organ Prolapse
 - 11% of women will have surgery for POP in their lifetime

Options for Surgical Repair

- Native tissue repair without a graft
 - -Anterior colporrhaphy
 - -Burch
 - -MMK
- Graft procedure
 - -Autologous: rectus fascia, fascia lata
 - –Xenograft: Pelvicol[™], SIS, bovine pericardium
 - -Cadaveric: fascia lata, dura mater
 - -Synthetic: Type 1-4

Sling Cystourethropexy: Autologous

- Fascia lata, rectus fascia, vaginal wall
- Success rate: 85-93%
- 47% able to walk freely without pain immediately postop
- 93% pain free at 1 week postop
- No infection
- No thrombotic complications

Sling Cystourethropexy: Xenograft

- Xenograft: Pelvicol[™],
 SIS, bovine pericardium
- Success rate: 85%
- Side effects: foreign body reaction

Sling Cystourethropexy: Allograft Cadaveric Fascia

- Autolysis
- Disease transmission: viral (HIV, Hep C), bacterial, and prion

Cadaveric Fascia Lata Autolysis

• 67 sacrocolpopexy

Freeze dried irradiated

- 35 sling cystourethropexy
- 13 recurrent symptoms <4 months
- 7/13 graft remnant: attenuated, lax
- 6 absent

Cadaveric Fascia Lata Autolysis

- Cadaveric Fascia Lata
 - N=121
 - -7 failed < 1 month
- Autologous Fascia Lata
 - N=46
 - -0 failures

Creutzfeldt-Jakob Transmission

Source of Infection	No. cases	Mean incubation period, y (range)	Clinical signs+
Dura mater graft	228	12 (1.3–30)	Cerebellar, visual, dementia
Neurosurgical instruments	4	1.4 (1-2.3)	Visual, dementia, cerebellar
Stereotactic EEG needles	2	1.3, 1.7	Dementia, cerebellar
Corneal transplant	2	1.5, 27	Dementia, cerebellar
Growth hormone	226	17 (5-42)‡	Cerebellar
Gonadotropin	4	13.5 (12–16)	Cerebellar
Packed red blood cells§	3	6.5, 7.8, 8.3	Psychiatric, sensory, dementia, cerebellar

UNIVERSITY OF IOWA HEALTH CARE

Brown et al. Emerg Infect Dis 2012

Meshes and Grafts used in Pelvic Reconstructive Surgery

Summary of findings

Sling Success Rates

SUPPLEMENTARY TABLE 3

Evidence profile for pubovaginal sling vs midurethral sling

							ourinning of intentige				
Outcome	No. studies	Total n	Methodological quality	Consistency	Directness	Other considerations	Evidence strength	Effect	Outcome importance		
Objective cure	3	233	1B (-1), 1B (-2), 1C(-2)	0	0	0	Low	No difference	Critical		
Subjective cure	4	305	2B (-2), 1C (-2)	0	0	0	Very low	No difference	Critical		
Perioperative outcomes	4	383	2B (-1), 2C (-2)	-1	0	0	Low	Favors midurethral	Variable		
Quality of life	3	342	2B (-1), 1C (-2)	0	0	0	Low	No difference	Critical		
Sexual functioning	0	0	NA	NA	NA	NA	NA	NA	High		
Total	5 separate										

Quality of overall evidence: low. Balance of benefits and harms: comparing PVS (fascia or synthetic material) to synthetic midurethral slings (only retropubic passage was studied), objective and subjective cure outcomes as well as quality of life and sexual function outcomes showed no differences. There were not enough studies available to perform a metaanalysis for objective cure outcomes, but a metaanalysis for subjective cure significantly favored midurethral slings. Both short-term (perioperative) and long-term adverse event data in general favored midurethral slings although metaanalysis did not show a difference for selected adverse-event outcomes.

NA, not applicable; PVS, pubovaginal slings.

Schimpf. Sling surgery for stress urinary incontinence. Am J Obstet Gynecol 2014.

Efficacy of Mesh or Grafts in Surgery for Vaginal Wall Prolapse (RCTs)

NIVERSITY OF IOWA

	Experin	nent	Control			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H, Random, 95% CI		
1.1.1 nonabsorbable	synthetic	mesh \	/S none						
Al-Nazer 2007	1	20	3	20	0.9%	0.33 [0.04, 2.94]			
Ali S 2006	3	46	5	43	2.1%	0.56 [0.14, 2.21]			
Altman D 2011	69	176	114	174	12.3%	0.60 [0.48, 0.74]	*		
Del Roy C 2011	3	39	13	39	2.7%	0.23 [0.07, 0.75]			
Duggan P	9	19	7	16	5.4%	1.08 [0.52, 2.25]			
Dyer K 2010	1	27	3	23	0.9%	0.28 [0.03, 2.55]			
Hitunen R 2007	7	104	9	86	3.8%	0.64 [0.25, 1.66]			
Menefee SA 2011	5	28	14	24	4.3%	0.31 [0.13, 0.73]			
Nguyen JN 2008	5	38	17	38	4.2%	0.29 [0.12, 0.72]			
Nieminen K 2010	14	105	40	97	7.5%	0.32 [0.19, 0.56]			
Sivaslioglu AA 2008	4	43	12	42	3.3%	0.33 [0.11, 0.93]			
Vollebregt A 2011	6	56	34	58	4.9%	0.18 [0.08, 0.40]			
Subtotal (95% CI)		701		660	52.4%	0.41 [0.29, 0.57]	•		
Total events	127		271						
Heterogeneity: Tau ² =	0.15; Chi2	= 23.02	2, df = 11	(P = 0.	02); l ² = 5	2%			
Test for successive the street			0041	0.1	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A				

Test for overall effect: Z = 5.13 (P < 0.00001)

This will not end well

Complications

Perforation

Extrusion

Erosion

Obstruction

Pain

- Temporally related to mesh placement
- Along the path of the mesh
- Worse with palpation
- Only resolves 28% of the time even with multiple surgeries (Blavias JG et al. J Urol 2013)

Complications of Slings

- Meta-analysis of 49 studies
 11 RTCs
- 6,406 pts
- 766 complications RP-MUS
- 579 complications TO-MUS

Success and Complications of Vaginal Mesh POP: Systematic Review

VIVERSITY OF IOWA

	Apogee [™]			Prolift **			PIVS			Polypropylene		
	%	SD	95% CI	%	SD	95% CI	%	SD	95% CI	%	SD	95% CI
No. women (n)	525		1295		655		178					
Mean follow up (weeks ± SD)		26 ±	15	30 ± 12		46 ± 36		78 ± 47				
Objective success	95.4	3.6	95.1-95.7	86.8	7.3	86.4-87.3	88.2	11.3	87.2-89.1	91.6	4.6	90.9-92.3
Total complication rate	17.6	10.4	16.7-18.5	16.5	11.2	15.9-17.1	12.1	6.1	11.6-12.5	6.9	0.3	6.8-6.9
Mesh erosion	10.7	6.9	10.1-11.3	5.7	4.8	5.5-6.0	7.8	7.1	7.2-8.3	4.6	2.3	4.2-5.0
Dyspareunia	2.7	3.6	2.4-3.0	2.1	2.1	2.0-2.2	1.7	2.8	1.5-1.9	5.5	4.7	4.7-6.3

vaginal mesh erosion - mages Videos Maps	Google Search News Shopping Gmail more +		Gi ▼ Si ▼ 🖶 ▼ 📴 Page ▼ Si
Google	vaginal mesh erosion About 121,000 results (0.05 seconds) Injured By Avaulta TVM - Severe Mesh Complications Get Help Today. Visit to Learn More www.forthepeople.com	Search Advanced search Ad	SafeSearch strict ▼ Ads Transvaginal Mesh Lawsuit
B B B G A BLASINGA	Surgical Mer ME BURCH GARRARD AS Medical Information Did you have surgery to treat Did you suffer serious complete	TO ALL WON at a leaky bladder? lications?	VIEN rissue.
	INICAL OPINION		www.AJOG.org
UROC Use FDA Sara J. M	GYNECOLOGY of vaginal mesh in the face of rec warnings and litigation fucowski, MD; Catalin Jurnalov, MD; John Y. Phelps, MD, JD, LLM	ent	

Tissue Engineering: Individualized Medicine

- Injectable autologous cells
- Tissue engineered grafts for incontinence and prolapse
- Adult stem cells + matrix or scaffold
- Synthetic (polyglycolic acid) or biologic (SIS)

Stem Cell Types

- Embryonic Stem Cells (ESC)
- Amniotic Fluid/Placental Stem Cells (AFPS)
- Induced Pluripotent Stem Cells (IPSC)
- Adult Stem Cells (ASC)
 - Mesenchymal Stem Cells (MSC): most common in urology; harvested from bone marrow, muscle or adipose tissue
 - Urine Derived Stem Cells (USC): easy to obtain, expandable and differentiate into muscle, bone, cartilage and fat

Autologous Muscle Derived Cells for SUI in Women

- Feasibility study
- 38 patients
- Intrasphincteric injection
 - -low doses of 1, 2, 4, 8, 16 x 10⁶ cells
 - -high doses of 32, 64, 128 x 10⁶ cells
- Appears safe
- Potential dose response = higher doses

Autologous Muscle Derived Cells for SUI in Women

- Safety and efficacy study
- 80 patients
- Intrasphincteric injection –doses of 10, 50, 100, 200 x 10⁶ cells
- Appears safe
- Potential dose response = higher doses

Tissue-engineered Autologous Urethras

- 5 boys, median age 11 years
- Muscle, epithelial cells expanded, seeded onto tubularized polyglycolic acid
- Engineered grafts developed normalappearing architecture by 3 months
- Tubularized urethras can be engineered and remain remain functional for up to 6 years

THE LANCET

Volume 384, Issue 9940, 26 July-1 August 2014, Pages 329-336

Articles

Tissue-engineered autologous vaginal organs in patients: a pilot cohort study

Prof Atlántida M Raya-Rivera, MD^a, Prof Diego Esquiliano, MD^a, Prof Reyna Fierro-Pastrana, MD^a, Prof Esther López-Bayghen, PhD^a, Prof Pedro Valencia, MD^a, Prof Ricardo Ordorica-Flores, MD^a, Prof Shay Soker, PhD^b, Prof James J Yoo, PhD^b, Prof Anthony Atala, MD^{b, , , M}

 Vaginal organs engineered from patient's own cells and implanted showed normal structural and functional variables (follow-up ≤8 years)

Conclusions

- There is no ideal material for use in the surgical treatment of female incontinence and POP
- Autologous fascia is probably best available option today but limited in volume with possible harvest site morbidity
- Tissue engineering can provide unlimited autologous tissue with minimal side effects